of0
SDÜ Education Information System Course Content
Programme
Graduate School of Natural and Applied Sciences Civil Engineering
Course Information
Course Unit Code
Course Unit Title
Credit Theoretic
Credit Pratic
Credit Lab/A
Credit Total
Credit Ects
Semester
01INS5161
Soil Stablizations and Soil Buildings
3.00
0.00
0.00
3.00
6.00
1
Course Information
Language of Instruction
Turkish
Type of Course Unit
Elective
Course Coordinator
Professor Sıddıka Nilay KESKİN
Course Instructors
 
Course Assistants
 
Course Aims
The main principle in foundation engineering is to support the building on shallow foundations, especially on single square footings. The existing soil at a construction site may not always be totaly suitable for supporting structures on single footings in such a condition. If it is not possible to use single footings, one can use mat foundations. In Turkey, engineers prefer to construct buildings on deep foundations when the building loads are high. But, shallow foundations on improved site may stil offer cheaper way. Today, with the common ground is met problematic. On the ground floor of this building before stabilization is required.
Course Goals
 
Learning Outcomes of The Course Unit
1) Ability to decide if soil improvement is necessary or not
2) Ability to choosing the right soil improvement technique and decide about the applicability
3) Ability to design stone columns and jet-grouting
Course Contents
Classification of ground improvement techniques, necessity for improvement, ground improvement from the surface, improvement using vibratory techniques, dynamic consolidation, preloading, drains, grouting methods, deep mixing methods, interpretation of soil improvements, soil improvement studies in earthquake regions

Prerequisities and Co-requisities Courses
 
Recommended Optional Programme Components
 
Mode Of Delivery
 
Level of Course Unit
 
Assessment Methods and Criteria
ECTS / Table Of Workload (Number of ECTS credits allocated)
Studies During Halfterm
Number
Co-Efficient
Activity
Number
Duration
Total
Visa
1
70
Course Duration (Excluding Exam Week)
14
3
42
Quiz
0
0
Time Of Studying Out Of Class
14
3
42
Homework
2
30
Homeworks
3
15
45
Attendance
0
0
Presentation
0
0
0
Application
0
0
Project
0
0
0
Lab
0
0
Lab Study
0
0
0
Project
0
0
Field Study
0
0
0
Workshop
0
0
Visas
1
20
20
Seminary
0
0
Finals
1
25
25
Field study
0
0
Workload Hour (30)
30
TOTAL
100
Total Work Charge / Hour
174
The ratio of the term to success
40
Course's ECTS Credit
6
The ratio of final to success
60
 
TOTAL
100
 
Recommended or Required Reading
Textbook
 
Additional Resources
1) Önalp, A., Sert, S., (2006), Geoteknik Bilgisi III, Bina Temelleri, Birsen Yayınevi.
2) Van Impe, W.F., (1989), Soil Improvement Techniques and Their Evolution, 125s. Balkema, Rotterdam.
3) Bowles, J.E., (1996), Foundation Analysis and Design, 5.Edition, McGraw Hill Co., NewYork.
4) Coduto, D.P., (2001), Foundation Design, Prentice Hall.
5) Cernica, J.N., (1995), Geotechnical Engineering: Foundation Design, J. Wiley.
6) Das, B., (1990), Principles of Foundation Engineering, 2nd Ed., PWS-Kent.

Material Sharing
Documents
 
Assignments
Assignment I, Assignment II
Exams
 
Additional Material
 
Planned Learning Activities and Teaching Methods
Lectures, Practical Courses, Presentation, Seminar, Project, Laboratory Applications (if necessary)
Work Placements
As with any other educational component, credits for work placements are only awarded when the learning outcomes have been achieved and assessed. If a work placement is part of organised mobility (such as Farabi and Erasmus), the Learning Agreement for the placement should indicate the number of credits to be awarded if the expected learning outcomes are achieved.
Program Learning Outcomes
No
Course's Contribution to Program
Contribution
1
An ability to design, conduct laboratory experiments and analyze and interpret data, in one of the major civil engineering areas
4